Computational study of paroxetine-like inhibitors reveals new molecular insight to inhibit GRK2 with selectivity over ROCK1 Seketoulie Keretsu^a, Swapnil P. Bhujbal^a, Seung Joo Cho^{a,b,*} ^a Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea ^bDepartment of Cellular·Molecular Medicine, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea Address: College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu Gwangju 501-759, Republic of Korea; E-mail:chosj@chosun.ac.kr; Telephone: +82-62-230-7482 (office) +82-11-479-1010 (cell phone ^{*}Author for correspondence ## **Supplementary Materials** **Table S1.** Comparison of the residues at the adenine subsite, polyphosphate subsite, ribose subsite and hydrophobic subsite for GRK2, ROCK1 and ROCK2 | Subsites | | GRK2 | ROCK1 | ROCK2 | |------------------------|------------------|--|--|--| | Adenine Subsite | | Met274, Asn275,
Gly276, Gly277,
Asp278, Leu279,
His280 | Met156, Pro157,
Gly158, Gly159,
Asp160, Leu161,
Val162 | Met172, Pro173,
Gly174, Gly175,
Asp176, Leu177,
Val178. | | Polyphosphate | Subsite | Tyr217, Ala218,
Met219, Lys220,
Cys221, Leu222 | Tyr102, Ala103,
Met104,Lys105,Leu106,
Leu107 | Tyr118, Ala119,
Met120, Lys121,
Leu122, Leu123 | | Ribose Subsite | | Gly276, Gly277,
Asp278, Leu279,
His280, Tyr281,
His282, Leu283,
Ser284 | Gly156, Gly159,
Asp160, Leu161,
Val162, Asn163,
Leu164, Met165 | Gly174, Gly175,
Asp176, Leu177,
Val178, Asn179,
Leu180, Met181, | | | P-loop | Ile197, Gly198,
Arg199, Gly200,
Gly201, Phe202,
Gly203, Glu204,
Val205 | Ile98, Gly99, Arg100,
Gly101, Ala102,
Phe103, Gly104,
Gly105, Val106 | Ile82, Gly83,
Arg84, Gly85,
Ala86, Phe87,
Gly88, Glu89,
Val90 | | Hydrophobic
Subsite | αC-Helix | Thr234, Leu235,
Ala236, Leu237,
Asn238, Glu239,
Arg240, Ile241,
Met242, Leu243,
Ser244, Leu245,
Val246, Ser247 | Ser118, Ala119,
Phe120, Phe121,
Trp122, Glu123,
Glu124, Arg125,
Asp126, Ile127,
Met128, Ala129,
Phe130, Ala131 | Ser134, Ala135,
Phe136, Phe137,
Trp138, Glu139,
Glu140, Arg141,
Asp142, Ile143,
Met144, Ala145,
Phe146, Ala147 | | | DFG/DLG
motif | Asp335, Leu336,
Gly337 | Asp216, Phe217,
Gly218 | Asp232, Phe233,
Gly234 | Table S2. Experimental and predicted pIC₅₀ values with their residuals of CoMFA for GRK2 | | Actual pIC ₅₀ | GRK2 CoMFA | | |----------|--------------------------|-----------------------------|----------| | Compound | | Predicted pIC ₅₀ | Residual | | 1* | 5.9 | 6.0 | -0.1 | | 2* | 6.1 | 5.8 | 0.3 | | 3 | 4.7 | 4.9 | -0.2 | | 4 | 5.4 | 5.4 | -0.1 | | 5* | 6.2 | 6.8 | -0.7 | | 6 | 6.7 | 6.8 | -0.1 | |-----|-----|-----|------| | | | | | | 7 | 6.7 | 6.6 | 0.1 | | 8 | 7.3 | 7.2 | 0.0 | | 9* | 6.4 | 6.1 | 0.3 | | 10 | 6.4 | 6.6 | -0.3 | | 11 | 6.8 | 6.8 | 0.0 | | 12 | 6.6 | 6.5 | 0.0 | | 13 | 5.3 | 5.2 | 0.1 | | 14* | 6.6 | 6.2 | 0.4 | | 15 | 6.9 | 7.1 | -0.2 | | 16* | 7.2 | 7.5 | -0.4 | | 17* | 6.9 | 7.1 | -0.2 | | 18 | 5.9 | 6.0 | 0.0 | | 19 | 5.6 | 5.4 | 0.2 | | 20 | 5.7 | 5.7 | 0.0 | | 21* | 6.6 | 6.7 | -0.1 | | 22 | 4.6 | 4.5 | 0.1 | | 24* | 6.3 | 5.6 | 0.8 | | 25 | 6.2 | 6.4 | -0.2 | | 26 | 5.7 | 5.5 | 0.2 | | 27* | 6.1 | 6.1 | 0.0 | | 28 | 5.6 | 5.6 | -0.1 | | 29 | 5.8 | 6.0 | -0.2 | | 30* | 5.7 | 5.9 | -0.2 | | 31* | 4.9 | 4.9 | 0.0 | | 32 | 5.7 | 5.9 | -0.3 | | | | | | | 33 | 5.7 | 5.8 | 0.0 | |-----------------|-----|-----|------| | 34 | 5.7 | 5.7 | 0.0 | | 35* | 4.4 | 5.1 | -0.7 | | 36 | 5.6 | 5.6 | 0.0 | | 37* | 6.2 | 6.6 | -0.4 | | 38 | 5.8 | 5.9 | -0.1 | | 39 | 5.7 | 5.7 | 0.0 | | 40* | 5.5 | 5.9 | -0.4 | | 41* | 5.5 | 5.7 | -0.2 | | 42 | 5.5 | 5.6 | -0.1 | | 43 | 5.2 | 5.2 | 0.1 | | 44* | 5.2 | 5.9 | -0.7 | | 45 | 6.1 | 6.1 | 0.0 | | 46 | 6.2 | 6.2 | 0.0 | | 47 | 7.5 | 7.0 | 0.6 | | 48 | 6.1 | 6.7 | -0.6 | | 49 | 7.5 | 7.1 | 0.4 | | 50 [*] | 5.9 | 5.7 | 0.2 | | 51 | 5.7 | 5.4 | 0.2 | | 52 | 6.4 | 6.4 | 0.0 | | 53* | 4.8 | 5.7 | -0.9 | | 1 | 1 | 1 | 1 | ^{*} Test set compounds **Table S3.** Experimental and predicted pIC_{50} values with their residuals of CoMFA for ROCK1. | | Actual pIC ₅₀ | ROCK1 CoMFA | | |----------|--------------------------|-------------------|----------| | Compound | | Predicted | Residual | | | 1 50 | pIC ₅₀ | Residual | | 2 | 7.0 | 7.1 | -0.1 | | 3 | 6.7 | 6.6 | 0.1 | | 4 | 6.3 | 6.3 | 0.0 | | 5 | 7.2 | 7.1 | 0.0 | | 6 | 7.7 | 7.4 | 0.3 | | 7 | 7.0 | 6.6 | 0.3 | | 8 | 7.2 | 7.3 | -0.1 | | 9 | 7.0 | 7.0 | 0.0 | | 10 | 7.3 | 7.3 | 0.0 | | 11 | 8.0 | 8.2 | -0.3 | | 12 | 7.6 | 7.6 | 0.0 | | 13 | 7.1 | 7.1 | 0.0 | | 14 | 7.9 | 7.9 | 0.0 | | 15 | 5.2 | 5.7 | -0.5 | | 16 | 5.2 | 5.1 | 0.2 | | 19 | 5.7 | 5.2 | 0.5 | | 20 | 6.8 | 6.9 | -0.1 | | 21 | 6.5 | 6.5 | -0.1 | | 22 | 6.3 | 6.4 | -0.1 | | 23 | 6.4 | 6.4 | -0.1 | | 24 | 6.7 | 6.7 | -0.1 | **Figure S1**. The catalytic domain (grey) of GRK2 with the compound **47** (magenta) binded at its active site (PDB ID **5UKM**). The adenine subsite, ribose subsite, polyphosphate subsite and hydrophobic subsite are indicated with black rectangular boxes. The DFG/DLG motif and the Lys220 which are conserved in most AGC kinases are shown in stick representation (deepblue). **Figure S2.** The alignment of the amino acid sequences in the kinase domains of GRK2 and ROCK1. Identical and positive matches in the sequences are highlighted by red and green colours respectively. | Protein | Residue | Identities: 89/271 (33 %) Positives: 143/271 (52%) | Residue | |---------|---------|--|---------| | | number | Sequences | number | | GRK2 | 191 | FSVHR I GRGGEGEN YGCNKAD GRMVANIKC DEKRIKMKQGETLALNULIMLSLVSTGD | 250 | | ROCK1 | 76 | NENVKVIGROA I GHA QLVINHKS <mark>irin v vamik</mark> li s <mark>i</mark> fe <mark>m</mark> i k <mark>r</mark> sdsaf fwe <mark>gil</mark> d <mark>ima</mark> fa <mark>ns</mark> | 133 | | GRK2 | 251 | CEF I CMSTATHTPDK SFILDLMNGGDLHYHLOHGNFS ADMRES AMELI G EHMEN | 310 | | ROCK1 | 134 | - <mark>wvv</mark> qifyai qddryi ym <mark>yme</mark> ym pegdu vnl <mark>m</mark> n <mark>ydu</mark> -pi kwarim t <mark>agyvi</mark> a <mark>d</mark> a iis | 191 | | GRK2 | 311 | RFV <mark>VYRDLKI AT IELDEHGHVR I ST</mark> LELACDF STK K PHA S UGT HG MAPEVLQ KGVA | 367 | | ROCK1 | 192 | MGF <mark>IHROVKO</mark> D <mark>AMIJIOK</mark> S <mark>BILKLA</mark> FTTCMKM <mark>NKE</mark> GMV <mark>R</mark> CDT <mark>AVGI</mark> PD <mark>V I SPAVIJK</mark> SQGG | 251 | | GRK2 | 368 | T DSS A DMF \$LL CM LFKLL R C H SPL RQHKTKDK H EIDR W TLTM <mark>AN</mark> EL TI SF TP L R | 422 | | ROCK1 | 252 | DGY GREC <mark>DWW V V</mark> F YEM V DID YADS LVGTYS-KIMNHKN <mark>S L</mark> TF DDNDI K. AK | 310 | | GRK2 | 423 | SLEGL QR VNR CCCGR AQUVRES PH | 453 | | ROCK1 | 311 | NII CAFI T- TREV <mark>rig</mark> RNIVEI KRHL | 338 | **Figure S3**. The common substructure used in aligning the dataset compounds during the development of the CoMFA Models for GRK2 and ROCK1. **Figure S4.** The docked conformations of the most selective compound (compound **17**) and the most active compound for GRK2 (compound **47**) inside the active site of ROCK1. H-bond interactions were represented as yellow dotted lines. (a) Compound **17** with ROCK1 (b) Compound **47** with ROCK1. **Figure S5.** The interactions observed in the crystal structures of compound **11**, **17** and **47** with GRK2. H-bond interactions were represented as yellow dotted lines. (a) Compound **11** and GRK2 (PDB ID **5HE0**) (b) compound **17** and GRK2 (PDB ID **5HE2**) (c) compound **47** and GRK2 (PDB ID **5UKM**) **Figure S6.** Scatterplot generated from the CoMFA models. (a) Scatterplot of the CoMFA model for GRK2. (b) Scatterplot of the CoMFA model for ROCK1. The values on x-axis and y-axis represent the predicted pIC_{50} value and the actual pIC_{50} values respectively.